Adsorption Kinetics of Bromophenol Blue and Eriochrome Black T using Bentonite Carbon Composite Material

نویسندگان

  • Farida M. S. E. El-Dars
  • Hamed M Ibrahim
  • Heba A. B. Farag
  • M. Zakaria Abdelwahhab
  • M.E.H Shalabi
چکیده

The present study deals with the adsorption of Bromophenol blue (BB) and Erichrome black T (EBT) – two anionic dyes – onto bentonite carbon composite material (BCC). Batch studies were performed to evaluate the influence of various experimental parameters such as: pH, contact time, adsorbent dose and initial dye concentration. The optimal conditions for the dyes removal were found to be at pH = 1, applying a dose of 10 g.L and 20 g.L and for an equilibrium time of 40 mins for both dyes BB and EBT removal, respectively. The results also showed that process followed pseudo-second-order rate expression for dyes with a degree of intraparticle diffusion for BB and intraparticle and pore diffusion for EBT and it was found to be best represented by the Freundlich isotherm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Adsorption of Lead and Copper by a Carbon Black and Sodium Bentonite Composite Material: Study on Adsorption Isotherms and Kinetics

The efficiency of using a composite of carbon black and sodium bentonite in treating drinking water contaminated with lead and copper ions was analysed. The effects of pH, contact time, concentration and adsorbent dosage using an adsorbent composite of 20 % sodium bentonite and 80 % carbon black were studied. The adsorption data was tested with respect to Langmuir, Freundlich and Temkin iso...

متن کامل

Optimization of Acid Blue 113 Adsorption from Aqueous Solutions by Natural Bentonite Using Response Surface Model: Isotherm and Kinetic Study

Background & objectives: Dyes are one of the main environmental pollutants of textile industrial wastewater which are toxic, carcinogenic, mutagenic, and non-biodegradable. Therefore, in this study, Response Surface Methodology (RSM) was used to investigate the operational parameters and determine the optimum conditions for the removal of acid blue 113 in the presence of bentonite. Methods: The...

متن کامل

Kinetics of photocatalytic degradation of methylene blue by ZnO-bentonite nanocomposite

The present study reports, the synthesis of ZnO-bentonite nanocomposite by the incorporation of ZnO with bentonite clay. The nanocomposite was characterised by XRD and SEM. ZnO-bentonite was effectively used for removal of Methylene Blue (MB). Removal of MB takes place by photocatalytic degradation and adsorption. Photocatalytic degradation of MB occurs by advanced oxidation process. The factor...

متن کامل

Electrocatalytic Determination of Isoniazid by a Glassy Carbon Electrode Modified with Poly (Eriochrome Black T)

In this work poly eriochrome black T (EBT) was electrochemically synthesized on the glassy carbon electrode as electrode modifier. On the modified electrode, voltammetric behavior of isoniazid (INH) was investigated. The poly (EBT)-modified glassy carbon electrode has excellent electrocatalytic ability for the electrooxidation of isoniazid. This fact was appeared as a reduced overpotential of I...

متن کامل

Effect of activation factors on adsorption of cationic dye, methylene blue, by activated bentonite

The aim of this investigation was to study the relationship between activation factors and adsorption of cationic dye, methylene blue MB, by activated bentonite. The adsorption index was investigated as a function of acid type, time and temperature. A commercial bentonite was selected as a starting material and the effect of heat treatment on MB adsorption were determined in a batch setup. Thou...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015